Knowledge Vault 6 /97 - ICML 2024
Programming Multiscale Health
Morgan Levine
< Resume Image >

Concept Graph & Resume using Claude 3.5 Sonnet | Chat GPT4o | Llama 3:

graph LR classDef systems fill:#f9d4d4, font-weight:bold, font-size:14px classDef aging fill:#d4f9d4, font-weight:bold, font-size:14px classDef cells fill:#d4d4f9, font-weight:bold, font-size:14px classDef research fill:#f9f9d4, font-weight:bold, font-size:14px classDef evolution fill:#f9d4f9, font-weight:bold, font-size:14px Main[Programming Multiscale Health] --> S[Systems Biology] Main --> A[Aging Process] Main --> C[Cellular Dynamics] Main --> R[Research Advances] Main --> E[Evolution Patterns] S --> S1[Life thrives away from
balance 1] S --> S2[Systems organize many scales 2] S --> S3[Small chaos creates order 3] S --> S4[Biology shows system levels 16] S --> S5[Cell goals conflict body 17] A --> A1[Aging optimizes outside range 9] A --> A2[Evolution ignores post-reproduction 10] A --> A3[Extended breeding delays aging 11] A --> A4[Early benefits become diseases 12] A --> A5[Healing shifts toward damage 13] C --> C1[Cells compete work together 8] C --> C2[Age makes inflammation harmful 14] C --> C3[Cell aging role changes 15] C --> C4[Cells show programming flex 21] C --> C5[Cell states follow maps 22] C --> C6[Birth cells reset age 23] R --> R1[Computer models improve health 20] R --> R2[Clones prove renewal possible 24] R --> R3[Yamanaka enables cell potential 25] R --> R4[Altos builds biology models 26] R --> R5[Research joins math labs 27] E --> E1[Evolution matches learning patterns 4] E --> E2[Life maximizes breeding success 5] E --> E3[Environment changes update states 6] E --> E4[Learning mirrors mutation rates 7] E --> E5[Reproduction beats longevity 19] R5 --> R6[Three institutes collaborate 28] R5 --> R7[New factors guide change 29] R4 --> R8[Data spans micro macro 30] E5 --> E6[Long breeding fights cancer 18] class Main,S,S1,S2,S3,S4,S5 systems class A,A1,A2,A3,A4,A5 aging class C,C1,C2,C3,C4,C5,C6 cells class R,R1,R2,R3,R4,R5,R6,R7,R8 research class E,E1,E2,E3,E4,E5,E6 evolution

Resume:

1.- Living systems operate far from equilibrium

2.- Systems exhibit multiscale organization

3.- Microscopic chaos yields macroscopic order

4.- Evolution parallels multi-agent reinforcement learning

5.- Organisms optimize for reproductive fitness

6.- Environmental changes trigger state updates

7.- Mutations relate to learning rates

8.- Cells work competitively and cooperatively

9.- Aging represents out-of-distribution optimization problem

10.- Post-reproductive periods lack evolutionary optimization

11.- Longer reproductive lifespans delay aging

12.- Disease patterns reflect early beneficial functions

13.- Fibrosis shifts from healing to harmful

14.- Inflammation becomes maladaptive with age

15.- Cellular senescence changes role over time

16.- Multiple hierarchies exist in biological systems

17.- Organism-cell rewards may conflict

18.- Cancer resistance correlates with reproductive lifespan

19.- Living systems prioritize reproduction over longevity

20.- In silico fine-tuning could optimize health

21.- Cells demonstrate programming malleability

22.- Waddington landscape shows cell state transitions

23.- Reproductive cells reset age state

24.- Cloning demonstrates cell reprogramming potential

25.- Yamanaka factors enable pluripotency

26.- Altos develops multiscale biological models

27.- Company combines computation with experiments

28.- Three research institutes collaborate

29.- Novel transcription factors guide intervention

30.- Data collection spans cell to organism

Knowledge Vault built byDavid Vivancos 2024