Knowledge Vault 6 /92 - ICML 2024
Machine Learning Opportunities for the Next Generation of Particle Physics
Javier Duarte
< Resume Image >

Concept Graph & Resume using Claude 3.5 Sonnet | Chat GPT4o | Llama 3:

graph LR classDef physics fill:#f9d4d4, font-weight:bold, font-size:14px classDef hardware fill:#d4f9d4, font-weight:bold, font-size:14px classDef ml fill:#d4d4f9, font-weight:bold, font-size:14px classDef data fill:#f9f9d4, font-weight:bold, font-size:14px classDef future fill:#f9d4f9, font-weight:bold, font-size:14px Main[Machine Learning Opportunities
for the Next
Generation of Particle
Physics] --> P[Physics Fundamentals] Main --> H[Hardware & Detection] Main --> M[Machine Learning Integration] Main --> D[Data Processing] Main --> F[Future Developments] P --> P1[Universes basic building blocks 1] P --> P2[Particle Physics Model shows
symmetries 2] P --> P3[Higgs gives particles mass 3] P --> P4[Large Collider designs functions 4] P --> P5[CMS layers detect particles 5] H --> H1[Real-time detection needs hardware 8] H --> H2[ML algorithms match limits 9] H --> H3[Compress models through reduction 10] H --> H4[HLS4ML converts to hardware 11] H --> H5[Hardware improves processing speed 18] M --> M1[ML transforms physics research 6] M --> M2[Networks track particle moves 16] M --> M3[Transformers track efficiently 19] M --> M4[Networks respect Lorentz rules 20] M --> M5[ML discovers physical laws 21] M --> M6[Models simulate collisions 22] D --> D1[Fast processing collision events 7] D --> D2[Autoencoders find anomalies 12] D --> D3[Multiple detectors share insights 14] D --> D4[Hash functions reduce calculations 17] D --> D5[GANs create accurate particles 24] F --> F1[Framework extends beyond particles 13] F --> F2[Future colliders planned ahead 26] F --> F3[Program optimizes detector design 27] F --> F4[Foundation models aid research 28] F --> F5[Self-learning enhances data 29] D5 --> D6[JetNet tests generation methods 23] D5 --> D7[Evaluate generation quality 25] F5 --> F6[Physics guides data enhancement 30] F4 --> F7[Reconstruct from detector signs 15] class Main,P,P1,P2,P3,P4,P5 physics class H,H1,H2,H3,H4,H5 hardware class M,M1,M2,M3,M4,M5,M6 ml class D,D1,D2,D3,D4,D5,D6,D7 data class F,F1,F2,F3,F4,F5,F6,F7 future

Resume:

1.- Fundamental questions about universe's composition and building blocks

2.- Standard Model of Particle Physics structure and symmetries

3.- Higgs boson as mechanism for particle mass

4.- Large Hadron Collider design and operation principles

5.- CMS detector's multi-layered structure for particle detection

6.- Machine learning transforming traditional particle physics approaches

7.- Ultra-fast ML processing for 40 million collisions/second

8.- FPGA implementation challenges for real-time particle detection

9.- Co-design principles combining ML algorithms with hardware constraints

10.- Quantization and pruning techniques for model compression

11.- HLS4ML framework translating ML models to hardware

12.- Anomaly detection using variational autoencoders for new physics

13.- Applications of HLS4ML beyond particle physics

14.- Multimodal ML combining different detector data types

15.- Particle flow reconstruction from detector signatures

16.- Graph neural networks for particle track reconstruction

17.- Locality-sensitive hashing reducing computational complexity

18.- Performance improvements using GPU and specialized hardware

19.- Point transformer architecture for efficient particle tracking

20.- Lorentz symmetry incorporation into neural networks

21.- Discovering physical symmetries through machine learning

22.- Generative models for particle collision simulation

23.- JetNet dataset for benchmarking generative models

24.- Message-passing GANs for physics-accurate particle generation

25.- Metrics for evaluating physics-based generative models

26.- Future collider proposals post-LHC era

27.- Differentiable programming for detector optimization

28.- Foundation models potential in particle physics

29.- Self-supervised learning approaches for physics data

30.- Physics-driven data augmentation techniques

Knowledge Vault built byDavid Vivancos 2024