Knowledge Vault 5 /76 - CVPR 2022
Dual-Shutter Optical Vibration Sensing
Mark Sheinin, Dorian Chan, Matthew O'Toole, Srinivasa Narasimhan
< Resume Image >

Concept Graph & Resume using Claude 3 Opus | Chat GPT4o | Llama 3:

graph LR classDef setup fill:#f9d4d4, font-weight:bold, font-size:14px classDef algorithm fill:#d4f9d4, font-weight:bold, font-size:14px classDef experiments fill:#d4d4f9, font-weight:bold, font-size:14px classDef limitations fill:#f9f9d4, font-weight:bold, font-size:14px A[Dual-Shutter Optical Vibration
Sensing] --> B[Rolling, global shutter cameras
capture vibrations. 1] B --> C[Tilts shift speckle,
enabling vibration measurement. 2] B --> D[Cylindrical lens vertically
spreads multi-point speckle. 3] B --> E[Global shutter decodes
rolling shutter distortions. 4] A --> F[Algorithm recovers 63 kHz shifts
using low-speed cameras. 5] F --> G[Multiple references handle large
motions via merging. 6] A --> H[Prototype: 532nm laser,
optics, dual cameras. 7] A --> I[Translation, optimization
recover speckle shifts. 8] A --> J[Experiments: audio, tuning
fork, comparisons. 9] J --> K[Outperforms microphone separates
multiple audio sources. 10] J --> L[Analyzes tuning forks modes. 11] J --> M[Higher sensitivity than passive
handles motion. 12] A --> N[Requires markers for low-power
dense laser enables markerless. 13] A --> O[Sensor width limits points
vertical speckle restricts arrangements. 14] A --> P[Assumes reference camera
captures macro-motion. 15] class B,C,D,E setup class F,G,H,I algorithm class J,K,L,M experiments class N,O,P limitations


1.- Dual-shutter optical vibration sensing uses rolling and global shutter cameras to capture high-speed vibrations.

2.- Small surface tilts cause speckle pattern shifts, allowing vibration measurement.

3.- Cylindrical lens spreads speckle vertically, enabling multi-point sampling with rolling shutter.

4.- Global shutter provides reference frames to decode rolling shutter distortions.

5.- Algorithm recovers 2D speckle shifts up to 63 kHz using 60-134 Hz cameras.

6.- Multiple reference frames handle large object motions by merging partial recoveries.

7.- Prototype uses 532nm laser, relay optics, rolling and global shutter cameras.

8.- Speckle shifts recovered using image translation and optimization.

9.- Experiments: audio recording (speakers, instruments), tuning fork analysis, comparisons to prior work.

10.- Outperforms microphone in low frequencies and separates multiple audio sources.

11.- Analyzes tuning fork's fundamental, clang and in-plane vibrational modes.

12.- Higher sensitivity than passive video-based vibrometry; handles object motion.

13.- Requires retro-reflective markers for low-power laser; denser laser enables markerless recovery.

14.- Limited number of simultaneous points by sensor width; vertical speckle restricts some sensing arrangements.

15.- Assumes reference camera is fast enough to capture speckle macro-motion.

Knowledge Vault built byDavid Vivancos 2024